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Abstract. A classical minimax theorem was first proved by von Neumann in 1937. Since then a
Iot of variants concerning this theorem have been presented by many authors. In this paper a
generalized minimax theorem is proved by means of the concept of formal linear combinations which
was introduced in the author’s previous paper, and is further transformed into another version.
Some applications of minimax theorems are also given to the areas of optimization theory and
approximation theory.

4. Introduction

The purpose of this paper is to extend some results obtained in the author's recent
papers®»? in several aspects, In the first paper®, a generalized minimax theorem is proved
and applied to uniform (or Chebyshev) approximation by elements of a finite-dimensional
subspace. In the second one?, based on this, a duality theory is developed in the areas of
optimization and best approximation, An alternative proof is also given for the generalized
minimax theorem by means of formal linear combinations.

First, in the present paper, we replace the compactness condition imposed on a set by a
weaker one and establish a minimax theorem which is also a generalization of the previous
one,

We shall next proceed to a study of another form of the generalized minimax theorem.
A special type of it has been discussed in detail?” . We have called it a dual problem and
obtained a duality theorem. However, we have treated there a minimization problem by
elements of a finite-dimensional closed convex set, Our corresponding result is valid without
such a condition.

The remainder of the paper is devoted to the study of duality theory in optimization,
optimal control and best approximation. We relate the duality with a minimax theorem that
is proved by Pomerol®., More explicitly, we shall consider again the duality to optimization
problems of the minimax type which was discussed by the author4»5 We reveal the reason
why dual problems to optimization problems of the minimax type become problems of the
max type ‘and wvice versa. Finally, we shall deal with a problem of approximating a given
point by elements in a subspace of a normed linear space, and a duality theorem related
to it.

2. A generalized minimax theorem

Let U be a convex subset of a real linear topological space and V an arbitrary non-empty
set, As is shown by the auther”, the set V can be embedded into a real linear space by
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means of the concept of formal linear combinations. The set of all formal linear combinations
forms a linear space generated by elements of the set V.

In this section, we shall extend a minimax theorem®, replacing compactness condition on
U by inf-compactness. A function f is said to be inf-compact, if for all zeR, the lower level
sets {z|f(x)<y} are relatively compact.

Let us define the sets V, for all positive integers = :

‘_/nz{ (Xm'v_n) I Xn=(7\'1, ces M), ;n=(7)1, ~--avn)’§1)“£=ls

)\'i>05 Vg € V (l=1, 9n)}

THEOREM . Let U be a convex svbset of a real linear topological space and V an arbitrary
non-empty set, Assume that a real-valued function J on UXV satisfies the following two
conditions :

‘ () J(.,v) : U->R is convex and lower semi-continuous or all v € V ;

(ii) for some (nm, vy) € Vi the function defined by

7
iz K£J<_,V£> . U")R
=]

is inf-compact. Then the equality

n
min sup  J(u,v) = lim sup inf > S (u,vp)
=1

uelU veV n—>c0 (N, vp) €V u €U
holds.
PROOF, We denote by V¥ the set of all formal linear combinations, that is, all possible
expressions of the form :

»n
v =izi Mg, M €R, vy eV (i=1,...,n),

where » ranges over all positive integers. Moreover, we denote by V¥, the subset of y,~
which contains all possible expressions of the form :

k] n
U=i2=ll’i‘vi) 521 7\’£=1> 7\‘5203 ‘viév(izl).-.,n).

Thus, V, becomes a convex subset of the linear space ¥, ' Next we define the real-valued
function on U XV, by

T, p) = 21 N (, v2),

when ¢ U, p = 32 Muwee Vo. Then J(u,p) satisfies all the conditions of the “lopsided

minimax theorem”? . Therefore, we obtain the equality
- n .
min sup iZ} AJ(u,vs) = min sup J(x,v)
=
uelU pevVo wuelU veV

= sup inf iﬁ} N (1, v4)
-1

veEVo uelU
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= lim  sup inf iil N (2, v5)

n—>0co (Xm ‘_Uvn) 5/71 u €U

and, moreover, the minimum of the left-hand side is really attained at some point « ¢ U,
This completes the proof.

3. Alternative form of the minimax theorem

The notation is the same as in the preceding section. We assume now that the set U is
compact. Then, the result mentioned in Theorem | remains valid, With U a cmpact set, it
was first proved by the author®’, Based on this, we shall establish another form of it. The
underlying idea comes from a theorem in approximation theory, which indicates an algorithm
for approximating a continuous function by polynomials of a prescribed degree. Its generali-
zation has been proved by the author?. In this section, we shall prove one more result
related to it.

THEOREM 2. Let U be a compact convexr subset of a real linear topological space and V
a non-empty arbitrary set. Let J be a function defined on UXV satisfying condition (i) of
Theorem |, Then the equality

min sup  J(w,v) = sup (min max J (u, v,))
welU veV veF uelU wvievn

holds true, where F denotes the set of all finite subsets v= {vy} 2 of V.

PROOF. With v = {v,} 2, in place of V in Theorem 1, we have

M

min max J (u,vy) = max min Ao (u, v3),

o,
1

1
wuel wgev Apedy, welU

where, for each positive integer », A4, denotes the subset of R"” defined by
An = =gy ) | 23 N=1, %y =0 for all i },
t=1

Therefore, The right-hand side of the equality in this Theorem takes on the form

M=

lim sup min

n—>0 (A, vn) €V, u €U

e (e, v4) .

o
il
=

Hence, by “Theorem 1”8 we have the the desired equality. This completes the proof.

In a previous paper? the author showed that if I/ lies in an n-dimensional space, one
can take F as the set of all (n+1)-tuples of elements of V. Moreover, the author discussed
relations between optimal solutions of both sides of the equality appearing in Theorem 3.
More explicitly, it was shown that an optimal solution of either side is also an optimal solution
of the other. Unfortunately, such an assertion cannot be deduced in the present case,

If V is a non-empty convex subset of a real linear space and J (u, .) is a concave function
on V for each « ¢ U, then one can let F consist of singletons of the set V', This follows
from a well-known classical minimax theorem .2

A similar equality presented in the above theorem is also proved by Aubin andE keland2
under the additional condition that J(x,.) is a concave function for each u ¢ U. Their
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equality is, however, different from ours in essence in one point, that is, the right-hand
side in ours is replaced by the form “inf sup inf” in their equality.

4. Duality theory

In a previous paper® a duality theorem was obtained for an optimal control problem of

the minimax type. The problem took on the form:

4
max min [1{f(t,x(t))+g(t,u(t),=v(t))}dt
v(.) u(.) o

subject to

2D =A@ +h(t,u(®), o)), (z=dz/dt)
z(to)=xq, u(t) ¢ U, u(@) eV,

where z € R”, u € R?, v ¢ R? and A(?) is an nXn continuous matrix. It was assumed that
f(t,x) is a real-valued cotinuous function on RxR", convex and continuously differentiable
with respect to z. The controls %(.) and v(.) are measurable functions of ¢ and assume
their values in compact subsets U C R?, V < R respectively.

The Hamiltonian for the above problem is given by

E(,p) = max min [g@,u,v)+ph(t,u,v)]
veV uelU

for each p ¢ R”™ (p is assumed to be a row vector),

We referred to the following problem as the dual problem to the above one:

¢ .
max f Y kG p ()~ (@) (2B — AW + Kt 2D} di -

z(. o

subject to
—p () =AW +folt, z()), p(t1)=0, z(to)=zo.

Here f, denotes the partial derivatives of f with respect to x and the supremum is taken
over all pairs (z(.),p(.)), where z(.) is an absolutely continuous function safisfying z(to)
=z, and p(.) is the corresponding solution with condition p(z;)=0.

We proved the following duality theorem ; if a pair of controls (w*(.),v*(.)) gives a
saddle point to the first (minimax) problem and z* is the corresponding optimal trajectory,
then z* becomes an optimal control of the dual problem, and that both extremal values are
equal, It was also shown that even if there are no such controls («*(.),v*(.)), the extremal
value of the dual problem provides a lower bound for the original (or primal) problem.

When either « or v is not involved, we have the corresponding duality theorems, one of
which was stated in that paper®. We consider here another case when =z is not involved
and obtain a duality theorem for a minimization control problem with concave f. For this

purpose, rewrite the primal problem as follows :

t
max j Y 1R, () + g0 e))) de
v(.)

to
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ty
= —min J {—f@,x@))—g(t,v(@))}ds
v(.) i

subject to
2(t) =A@z +h,0@), z(te)=z0, () € V.

The dual problem for this reduces to the following :

t .
max J ' {k(2,p(2)) —p() (@) —A@ z(2)) +f(t, z(2))} dt

.7'() Ifo

t .
— —min j "R p () 58 (o) — £, 2(8))) d
z(.) Lo

subject to
—pO=pDAWD +£alt, (1)), p(tz) =0,2(t0) =ao.
The Hamiltonian for this problem is defined by
k(z,p)=max {g(¢,v) +ph(t,v)}
veV

for all p ¢ R®,

Rewriting —f by F and —g by G, these problems can be reformulated as follows :

¢
(Primal Problem) m(in YF( 2()) + Gt 0()) dt
T, to

subject to z(t) =A)z() +h(t,0(1)), z(te) =20, v(t) € V ;

t .
(Dual Problem) m(m) JI{K(t,p(t))+p(t)(x(t)—A(t)x(t))+F(t,x(t))}dt
FAW to
subject to —p(1) =p()A() —~F,(t, 2(2)), p(t)=0, z(to)=xz0,
where
K(t,p)= min {G(t,v)—ph(t,v)}
veV

for each p ¢ R™,

Applying the above-mentioned duality theorem, we can obtain the next proposition.

PROPOSITION 3. Let F(¢,z) be a real-valued continuous functionon on RXR®, concave
and continuously differentiable with respect to x. If the primal problem has an optimal
control, then the corresponding optimal trajectory z*(.) provides an optimal (absolutely
continuous) control. Moreover, both extremal values are equal.

In case that the primal problem has no optimal control, the extremal value of the dual
problem provides an upper bound for the primal problem.

5. Remarks on duality

We assume again that f(¢,z) is a continuous real-valued function on RXR?™ and that it is
convex and continuously differentiable with respect to z. If the control variable v is not

involved in the optimal control problem considered in the preceding section, the primal
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and dual problems take on the forms :

A
(Primal Problem)  min J YR 1 () + gt w()) d
u(. to

subject to 2B =A@ z@)+h(t, u(D), z(te)=zq, u(t) €U ;

4 .
(Dual Problem) rn(ax J. ! (2, p(£)) —p()(x(t) — A2 () +f(z, z(£))} dt
Z\. io

subject to —p.(t)=P(t)A(t)+fz(t,x(t)), z(tg) =10, p(£1)=0,
where k(¢,p) is defined by
k(z,p)=min {g(t,u) +ph(s,u)}
uwelU
for each p ¢ R,

The following duality relation in this circumstance was established in a previous paper
5 as a corollary of its main duality theorem.

PROPOSITION 4. If the primal problem has an optimal control w*(.), then the corresponding
optimal trajectory z*(.) provides an optimal (absolutely continuous) control for the dual
problem. Moreover, both extremal values are equal

It should be noted that in case that the primal problem has no optimal controls, the extre-
mal value of the dual one gives a lower bound for the primal one.

The above proposition suggests thal a dual problem of max-min type is associated with a
minimization problem involving a control variable. On the other hand, it was also shown
that dual maximization problems involving a control variable are associated with problems of
min-max type?’, We shall illustrate these relations by a simple example.

Let (X,Y) and (Z,W) be two dual pairs of linear spaces, The bilinear forms on X,Y and
Z,W will be denoted by {.,.>, Let A be a continuous linear function from X toZ when X
is endowed with o(X,Y) topology and Z with o(Z,W) topology. Let P be the positive cone
in X and Q a convex set in Y, whose interior is nonempty in the o(Y, X) topology. Define
the equality constrained linear programming problem of min-max type as follows :

minimize sup <z, y)
z y
subject to Az=b, z ¢ P, y ¢ Q, where b and ¢ are elements of Z and Y, respectively, The
feasible set is given by

F={z e X | Az=b, z ¢ P} .
Assume that

(i) sup inf  <{z,y> <+oo,
yeQ zeF

(ii)  there exists a point y, € int Q such that inf <{z,yq) is finite ;
reF

(iii) the sets of ZXR
D,= {(Az, {z,y))| z ¢ P}
are closed for all y € Q.
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By a result due to Anderson?, it is appropriate to call the following its dual problem :
max <{b,w)

subject to —A¥*w-+y € P*, we W, y e Q.
Here A* is the adjoint of A and P* is the dual cone of P, that is,
P*={y e Y|{z,yp=( for all z in P}.

Note that in the dual problem y plays a role of control variable.

Combining Theorem 6 of Anderson® and Theorem 2.14 of Pomerol®, one can obtain the
following duality relation.

PROPOSITION 5. Under the above conditions, both problems have the same exiremal values.

As anothar application of Theorem 2.14 of Pomerol, we consider a probem of approxim-
ating a given element L, in the dual E, of a normed linear space E by elements in the
annihilator M* of a closed subspace M of E, that is, M* is the set of all linear functionals
L in E* that vanish on M. This problem can be written as follows :

min [|L —Ly|| = min sup {L—Ly, x>,
LeM* LeM* ||z||<i

Applying Theorem 2.14 of Pomerol, one obtain

min [|L—L,|] = sup inf  {Ly—L, z>
LeM* lzell<1 LeM*

= sup inf {Lo—L, z> = sup [{Lg,z>|.
zeM LeM* zeM
|zl <1 IES |

Such a duality relation is treated by Ubhaya® in more detial.
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